Blood pressure

See Hypertension for more information about high blood pressure.
A sphygmomanometer, a device used for measuring arterial pressure.

Blood pressure (BP) is the pressure exerted by circulating blood upon the walls of blood vessels, and is one of the principal vital signs. During each heartbeat, BP varies between a maximum (systolic) and a minimum (diastolic) pressure.[1] The mean BP, due to pumping by the heart and resistance to flow in blood vessels, decreases as the circulating blood moves away from the heart through arteries. Blood pressure drops most rapidly along the small arteries and arterioles, and continues to decrease as the blood moves through the capillaries and back to the heart through veins.[2] Gravity, valves in veins, and pumping from contraction of skeletal muscles, are some other influences on BP at various places in the body.

The term blood pressure usually refers to the pressure measured at a person's upper arm. It is measured on the inside of an elbow at the brachial artery, which is the upper arm's major blood vessel that carries blood away from the heart. A person's BP is usually expressed in terms of the systolic pressure and diastolic pressure (mmHg), for example 120/80.

Contents

Measurement

A medical student checking blood pressure using a sphygmomanometer and stethoscope.

Arterial pressure is most commonly measured via a sphygmomanometer, which historically used the height of a column of mercury to reflect the circulating pressure.[3] BP values are reported in millimetres of mercury (mmHg), though aneroid and electronic devices do not use mercury.

For each heartbeat, BP varies between systolic and diastolic pressures. Systolic pressure is peak pressure in the arteries, which occurs near the end of the cardiac cycle when the ventricles are contracting. Diastolic pressure is minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood. An example of normal measured values for a resting, healthy adult human is 120 mmHg systolic and 80 mmHg diastolic (written as 120/80 mmHg, and spoken [in the US] as "one-twenty over eighty").

Systolic and diastolic arterial BPs are not static but undergo natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). They also change in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standing up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as opposed to hypotension, when it is abnormally low. Along with body temperature, respiratory rate, and pulse rate, BP is one of the four main vital signs routinely monitored by medical professionals and healthcare providers.[4]

Arterial pressures are usually measured non-invasively, without penetrating skin or artery. Measuring pressure invasively, by penetrating the arterial wall to take the measurement, is much less common and usually restricted to a hospital setting.

Noninvasive measurement

The noninvasive auscultatory and oscillometric measurements are simpler and quicker than invasive measurements, require less expertise, have virtually no complications, are less unpleasant and less painful for the patient. However, noninvasive methods may yield somewhat lower accuracy and small systematic differences in numerical results. Noninvasive measurement methods are more commonly used for routine examinations and monitoring.

Palpation method

A minimum systolic value can be roughly estimated by palpation, most often used in emergency situations. Historically, students have been taught that palpation of a radial pulse indicates a minimum BP of 80 mmHg, a femoral pulse indicates at least 70 mmHg, and a carotid pulse indicates a minimum of 60 mmHg. However, at least one study indicated that this method often overestimates patients' systolic BP.[5]

A more accurate value of systolic BP can be obtained with a sphygmomanometer and palpating the radial pulse.[6] The diastolic blood pressure can not be estimated by this method.[7] The American Heart Association recommends that palpation is used to get an estimate before using the auscultatory method.

Auscultatory method

Auscultatory method aneroid sphygmomanometer with stethoscope
Mercury manometer

The auscultatory method (from the Latin word for "listening") uses a stethoscope and a sphygmomanometer. This comprises an inflatable (Riva-Rocci) cuff placed around the upper arm at roughly the same vertical height as the heart, attached to a mercury or aneroid manometer. The mercury manometer, considered the gold standard, measures the height of a column of mercury, giving an absolute result without need for calibration and, consequently, not subject to the errors and drift of calibration which affect other methods. The use of mercury manometers is often required in clinical trials and for the clinical measurement of hypertension in high-risk patients, such as pregnant women.

A cuff of appropriate size is fitted smoothly and snugly, then inflated manually by repeatedly squeezing a rubber bulb until the artery is completely occluded. Listening with the stethoscope to the brachial artery at the elbow, the examiner slowly releases the pressure in the cuff. When blood just starts to flow in the artery, the turbulent flow creates a "whooshing" or pounding (first Korotkoff sound). The pressure at which this sound is first heard is the systolic BP. The cuff pressure is further released until no sound can be heard (fifth Korotkoff sound), at the diastolic arterial pressure.

The auscultatory method is the predominant method of clinical measurement.[8]

Oscillometric method

The oscillometric method was first demonstrated in 1876 and involves the observation of oscillations in the sphygmomanometer cuff pressure[9] which are caused by the oscillations of blood flow, i.e., the pulse.[10] The electronic version of this method is sometimes used in long-term measurements and general practice. It uses a sphygmomanometer cuff, like the auscultatory method, but with an electronic pressure sensor (transducer) to observe cuff pressure oscillations, electronics to automatically interpret them, and automatic inflation and deflation of the cuff. The pressure sensor should be calibrated periodically to maintain accuracy.

Oscillometric measurement requires less skill than the auscultatory technique and may be suitable for use by untrained staff and for automated patient home monitoring.

The cuff is inflated to a pressure initially in excess of the systolic arterial pressure and then reduced to below diastolic pressure over a period of about 30 seconds. When blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure below diastolic pressure), cuff pressure will be essentially constant. It is essential that the cuff size is correct: undersized cuffs may yield too high a pressure; oversized cuffs yield too low a pressure. When blood flow is present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will vary periodically in synchrony with the cyclic expansion and contraction of the brachial artery, i.e., it will oscillate. The values of systolic and diastolic pressure are computed, not actually measured from the raw data, using an algorithm; the computed results are displayed.

Oscillometric monitors may produce inaccurate readings in patients with heart and circulation problems, which include arterial sclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus.

In practice the different methods do not give identical results; an algorithm and experimentally obtained coefficients are used to adjust the oscillometric results to give readings which match the auscultatory results as well as possible. Some equipment uses computer-aided analysis of the instantaneous arterial pressure waveform to determine the systolic, mean, and diastolic points. Since many oscillometric devices have not been validated, caution must be given as most are not suitable in clinical and acute care settings.

The term NIBP, for non-invasive blood pressure, is often used to describe oscillometric monitoring equipment.

White-coat hypertension

For some patients, BP measurements taken in a doctor's office may not correctly characterize their typical BP.[11] In up to 25% of patients, the office measurement is higher than their typical BP. This type of error is called white-coat hypertension (WCH) and can result from anxiety related to an examination by a health care professional.[12] The misdiagnosis of hypertension for these patients can result in needless and possibly harmful medication. WCH can be reduced (but not eliminated) with automated BP measurements over 15 to 20 minutes in a quiet part of the office or clinic.[13]

Debate continues regarding the significance of this effect. Some reactive patients will react to many other stimuli throughout their daily lives and require treatment. In some cases a lower BP reading occurs at the doctor's office.[14]

Home monitoring

Ambulatory blood pressure devices that take readings every half hour throughout the day and night have been used for identifying and mitigating measurement problems like white-coat hypertension. Except for sleep, home monitoring could be used for these purposes instead of ambulatory blood pressure monitoring.[15] Home monitoring may be used to improve hypertension management and to monitor the effects of lifestyle changes and medication related to BP.[16] Compared to ambulatory blood pressure measurements, home monitoring has been found to be an effective and lower cost alternative.[15][17][18]

Aside from the white-coat effect, BP readings outside of a clinical setting are usually slightly lower in the majority of people. The studies that looked into the risks from hypertension and the benefits of lowering BP in affected patients were based on readings in a clinical environment.

When measuring BP, an accurate reading requires that one not drink coffee, smoke cigarettes, or engage in strenuous exercise for 30 minutes before taking the reading. A full bladder may have a small effect on BP readings; if the urge to urinate exists, one should do so before the reading. For 5 minutes before the reading, one should sit upright in a chair with one's feet flat on the floor and with limbs uncrossed. The BP cuff should always be against bare skin, as readings taken over a shirt sleeve are less accurate. During the reading, the arm that is used should be relaxed and kept at heart level, for example by resting it on a table.[19]

Since BP varies throughout the day, measurements intended to monitor changes over longer time frames should be taken at the same time of day to ensure that the readings are comparable. Suitable times are:

Automatic self-contained BP monitors are available at reasonable prices, some of which are capable of Korotkoff's measurement in addition to oscillometric methods, enabling irregular heartbeat patients to accurately measure their blood pressure at home.

Invasive measurement

Arterial blood pressure (BP) is most accurately measured invasively through an arterial line. Invasive arterial pressure measurement with intravascular cannulae involves direct measurement of arterial pressure by placing a cannula needle in an artery (usually radial, femoral, dorsalis pedis or brachial). This procedure can be done by any licensed medical doctor, nurse, or a Respiratory Therapist.

The cannula must be connected to a sterile, fluid-filled system, which is connected to an electronic pressure transducer. The advantage of this system is that pressure is constantly monitored beat-by-beat, and a waveform (a graph of pressure against time) can be displayed. This invasive technique is regularly employed in human and veterinary intensive care medicine, anesthesiology, and for research purposes.

Cannulation for invasive vascular pressure monitoring is infrequently associated with complications such as thrombosis, infection, and bleeding. Patients with invasive arterial monitoring require very close supervision, as there is a danger of severe bleeding if the line becomes disconnected. It is generally reserved for patients where rapid variations in arterial pressure are anticipated.

Invasive vascular pressure monitors are pressure monitoring systems designed to acquire pressure information for display and processing. There are a variety of invasive vascular pressure monitors for trauma, critical care, and operating room applications. These include single pressure, dual pressure, and multi-parameter (i.e. pressure / temperature). The monitors can be used for measurement and follow-up of arterial, central venous, pulmonary arterial, left atrial, right atrial, femoral arterial, umbilical venous, umbilical arterial, and intracranial pressures.

Classification

The following US classification of blood pressure applies to adults aged 18 and older. It is based on the average of seated BP readings that were properly measured during 2 or more office visits.[16][20] In the UK, patients’ readings are considered normal up to 140/90 mmHg.[21]

Classification of blood pressure for adults
Category systolic, mmHg diastolic, mmHg
Hypotension
< 90
< 60   
Normal
 90 – 120
and 60 – 80   
Prehypertension
121 – 139
or 81 – 89  
Stage 1 Hypertension
140 – 159
or 90 – 99  
Stage 2 Hypertension
≥ 160
or ≥ 100  

Normal values

While average values for arterial pressure could be computed for any given population, there is often a large variation from person to person; arterial pressure also varies in individuals from moment to moment. Additionally, the average of any given population may have a questionable correlation with its general health, thus the relevance of such average values is equally questionable. However, in a study of 100 subjects with no known history of hypertension, an average blood pressure of 112/64 mmHg was found,[22] which is in the normal range.

Various factors influence a person's average BP and variations. Factors such as age and gender[23] influence average values. In children, the normal ranges are lower than for adults and depend on height.[24] As adults age, systolic pressure tends to rise and diastolic tends to fall.[25] In the elderly, BP tends to be above the normal adult range,[26] largely because of reduced flexibility of the arteries. Also, an individual's BP varies with exercise, emotional reactions, sleep, digestion and time of day.

Differences between left and right arm BP measurements tend to be random and average to nearly zero if enough measurements are taken. However, in a small percentage of cases there is a consistently present difference greater than 10 mmHg which may need further investigation, e.g. for obstructive arterial disease.[27][28]

The risk of cardiovascular disease increases progressively above 115/75 mmHg.[29] In the past, hypertension was only diagnosed if secondary signs of high arterial pressure were present, along with a prolonged high systolic pressure reading over several visits.

Clinical trials demonstrate that people who maintain arterial pressures at the low end of these pressure ranges have much better long term cardiovascular health. The principal medical debate concerns the aggressiveness and relative value of methods used to lower pressures into this range for those who do not maintain such pressure on their own. Elevations, more commonly seen in older people, though often considered normal, are associated with increased morbidity and mortality.

Physiology

There are many physical factors that influence arterial pressure. Each of these may in turn be influenced by physiological factors, such as diet, exercise, disease, drugs or alcohol, stress, obesity, and so-forth. [30]

Some physical factors are:

In practice, each individual's autonomic nervous system responds to and regulates all these interacting factors so that, although the above issues are important, the actual arterial pressure response of a given individual varies widely because of both split-second and slow-moving responses of the nervous system and end organs. These responses are very effective in changing the variables and resulting BP from moment to moment.

Moreover, blood pressure is the result of cardiac output increased by peripheral resistance: blood pressure = cardiac output X peripheral resistance. As a result, an abnormal change in blood pressure is often an indication of a problem affecting the heart's output, the blood vessels' resistance, or both. Thus, knowing the patient's blood pressure is critical to assess any pathology related to output and resistance.

Mean arterial pressure

The mean arterial pressure (MAP) is the average over a cardiac cycle and is determined by the cardiac output (CO), systemic vascular resistance (SVR), and central venous pressure (CVP),[32]

\! \text{MAP} = (\text{CO} \cdot \text{SVR}) + \text{CVP}.

MAP can be approximately determined from measurements of the systolic pressure  \! P_{\text{sys}}  and the diastolic pressure  \! P_{\text{dias}}  while there is a normal resting heart rate,[32]

\! \text{MAP} \approxeq P_{\text{dias}} + \frac{1}{3} (P_{\text{sys}} - P_{\text{dias}}).

Pulse pressure

The up and down fluctuation of the arterial pressure results from the pulsatile nature of the cardiac output, i.e. the heartbeat. The pulse pressure is determined by the interaction of the stroke volume of the heart, compliance (ability to expand) of the aorta, and the resistance to flow in the arterial tree. By expanding under pressure, the aorta absorbs some of the force of the blood surge from the heart during a heartbeat. In this way the pulse pressure is reduced from what it would be if the aorta wasn't compliant.[33] The loss of arterial compliance that occurs with aging explains the elevated pulse pressures found in elderly patients.

The pulse pressure can be simply calculated from the difference of the measured systolic and diastolic pressures,[33]

\! P_{\text{pulse}} = P_{\text{sys}} - P_{\text{dias}}.

Arm-leg gradient

The arm-leg (blood pressure) gradient is the difference between the blood pressure measured in the arms and that measured in the legs. It is normally less than 10 mmHg,[34] but may be increased in e.g. coarctation of the aorta.[34]

Vascular resistance

The larger arteries, including all large enough to see without magnification, are low resistance conduits (assuming no advanced atherosclerotic changes) with high flow rates that generate only small drops in pressure.

Vascular pressure wave

Modern physiology developed the concept of the vascular pressure wave (VPW). This wave is created by the heart during the systole and originates in the ascending aorta. Much faster than the stream of blood itself, it is then transported through the vessel walls to the peripheral arteries. There the pressure wave can be palpated as the peripheral pulse. As the wave is reflected at the peripheral veins it runs back in a centripetal fashion. Where the crests of the reflected and the original wave meet, the pressure inside the vessel is higher than the true pressure in the aorta. This concept explains why the arterial pressure inside the peripheral arteries of the legs and arms is higher than the arterial pressure in the aorta,[35][36][37] and in turn for the higher pressures seen at the ankle compared to the arm with normal ankle brachial pressure index values.

Regulation

The endogenous regulation of arterial pressure is not completely understood. Currently, three mechanisms of regulating arterial pressure have been well-characterized:

These different mechanisms are not necessarily independent of each other, as indicated by the link between the RAS and aldosterone release. Currently, the RAS is targeted pharmacologically by ACE inhibitors and angiotensin II receptor antagonists. The aldosterone system is directly targeted by spironolactone, an aldosterone antagonist. The fluid retention may be targeted by diuretics; the antihypertensive effect of diuretics is due to its effect on blood volume. Generally, the baroreceptor reflex is not targeted in hypertension because if blocked, individuals may suffer from orthostatic hypotension and fainting.

Pathophysiology

High arterial pressure

Overview of main complications of persistent high blood pressure.

Arterial hypertension can be an indicator of other problems and may have long-term adverse effects. Sometimes it can be an acute problem, for example hypertensive emergency.

All levels of arterial pressure put mechanical stress on the arterial walls. Higher pressures increase heart workload and progression of unhealthy tissue growth (atheroma) that develops within the walls of arteries. The higher the pressure, the more stress that is present and the more atheroma tend to progress and the heart muscle tends to thicken, enlarge and become weaker over time.

Persistent hypertension is one of the risk factors for strokes, heart attacks, heart failure and arterial aneurysms, and is the leading cause of chronic renal failure. Even moderate elevation of arterial pressure leads to shortened life expectancy. At severely high pressures, mean arterial pressures 50% or more above average, a person can expect to live no more than a few years unless appropriately treated.[39]

In the past, most attention was paid to diastolic pressure; but nowadays it is recognised that both high systolic pressure and high pulse pressure (the numerical difference between systolic and diastolic pressures) are also risk factors. In some cases, it appears that a decrease in excessive diastolic pressure can actually increase risk, due probably to the increased difference between systolic and diastolic pressures (see the article on pulse pressure).

For those with heart valve regurgitation, a change in its severity may be associated with a change in diastolic pressure. In a study of people with heart valve regurgitation that compared measurements 2 weeks apart for each person, there was an increased severity of aortic and mitral regurgitation when diastolic blood pressure increased, whereas when diastolic blood pressure decreased, there was a decreased severity.[40]

Low arterial pressure

Blood pressure that is too low is known as hypotension. The similarity in pronunciation with hypertension can cause confusion. Hypotension is a medical concern only if it causes signs or symptoms, such as dizziness, fainting, or in extreme cases, shock.[20]

When arterial pressure and blood flow decrease beyond a certain point, the perfusion of the brain becomes critically decreased (i.e., the blood supply is not sufficient), causing lightheadedness, dizziness, weakness or fainting.

Sometimes the arterial pressure drops significantly when a patient stands up from sitting. This is known as orthostatic hypotension (postural hypotension); gravity reduces the rate of blood return from the body veins below the heart back to the heart, thus reducing stroke volume and cardiac output.

When people are healthy, the veins below their heart quickly constrict and the heart rate increases to minimize and compensate for the gravity effect. This is carried out involuntarily by the autonomic nervous system. The system usually requires a few seconds to fully adjust and if the compensations are too slow or inadequate, the individual will suffer reduced blood flow to the brain, dizziness and potential blackout. Increases in G-loading, such as routinely experienced by aerobatic or combat pilots 'pulling Gs', greatly increases this effect. Repositioning the body perpendicular to gravity largely eliminates the problem.

Other causes of low arterial pressure include:

Shock is a complex condition which leads to critically decreased perfusion. The usual mechanisms are loss of blood volume, pooling of blood within the veins reducing adequate return to the heart and/or low effective heart pumping. Low arterial pressure, especially low pulse pressure, is a sign of shock and contributes to and reflects decreased perfusion.

If there is a significant difference in the pressure from one arm to the other, that may indicate a narrowing (for example, due to aortic coarctation, aortic dissection, thrombosis or embolism) of an artery.

Other sites

Blood pressure generally refers to the arterial pressure in the systemic circulation. However, measurement of pressures in the venous system and the pulmonary vessels plays an important role in intensive care medicine but requires an invasive central venous catheter.

Venous pressure

Venous pressure is the vascular pressure in a vein or in the atria of the heart. It is much less than arterial pressure, with common values of 5 mmHg in the right atrium and 8 mmHg in the left atrium.

Pulmonary pressure

Normally, the pressure in the pulmonary artery is about 15 mmHg at rest.[41]

Increased BP in the capillaries of the lung cause pulmonary hypertension, with interstitial edema if the pressure increases to above 20 mmHg, and to frank pulmonary edema at pressures above 25 mmHg.[42]

Fetal blood pressure

In pregnancy, it is the fetal heart and not the mother's heart that builds up the fetal BP to drive its blood through the fetal circulation.

The BP in the fetal aorta is approximately 30 mmHg at 20 weeks of gestation, and increases to ca 45 mmHg at 40 weeks of gestation.[43]
The average BP for full-term infants:
Systolic 65–95 mm Hg
Diastolic 30–60 mm Hg [44]

See also

  • Ambulatory blood pressure
  • Antihypertensive
  • Auscultatory gap
  • Central venous pressure
  • Hypertension
  • Hypotension
  • Korotkoff sounds
  • Lactotripeptides
  • Mean arterial pressure
  • Prehypertension
  • Pulse pressure
  • Pulse rate
  • Resperate
  • Sphygmomanometer
  • Vital signs

References

  1. Pickering, TG; Hall, JE; Appel, LJ et al. (2005). "Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research". Hypertension 45 (5): 142–61. doi:10.1161/01.HYP.0000150859.47929.8e. PMID 15611362. http://hyper.ahajournals.org/cgi/content/full/45/1/142. Retrieved 2009-10-01. 

Footnotes

  1. "Normal Blood Pressure Range Adults". Health and Life. http://healthlifeandstuff.com/2010/06/normal-blood-pressure-range-adults/. 
  2. Klabunde, Richard (2005). Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins. pp. 93–4. ISBN 978-0781750301. 
  3. Booth, J (1977). "A short history of blood pressure measurement". Proceedings of the Royal Society of Medicine 70 (11): 793–9. PMID 341169. PMC 1543468. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1543468. Retrieved 2009-10-06. 
  4. "Vital Signs (Body Temperature, Pulse Rate, Respiration Rate, Blood Pressure)". OHSU Health Information. Oregon Health & Science University. http://www.ohsu.edu/xd/health/health-information/topic-by-id.cfm?ContentTypeId=85&ContentId=P00866. Retrieved 2010-04-16. 
  5. Deakin CD, Low JL (September 2000). "Accuracy of the advanced trauma life support guidelines for predicting systolic blood pressure using carotid, femoral, and radial pulses: observational study". BMJ 321 (7262): 673–4. doi:10.1136/bmj.321.7262.673. PMID 10987771. PMC 27481. http://bmj.com/cgi/pmidlookup?view=long&pmid=10987771. 
  6. Interpretation - Blood Pressure - Vitals, University of Florida. Retrieved on 2008-03-18.
  7. G8 Secondary Survey, "Manitoba". Retrieved on 2008-03-18.
  8. (Pickering et al. 2005, p. 146) See Blood Pressure Measurement Methods.
  9. (Pickering et al. 2005, p. 147) See The Oscillometric Technique.
  10. Laurent, P (2003-09-28). "Blood Pressure & Hypertension". http://www.blood-pressure-hypertension.com/how-to-measure/measure-blood-pressure-8.shtml. Retrieved 2009-10-05. 
  11. Elliot, Victoria Stagg (2007-06-11). "Blood pressure readings often unreliable". American Medical News (American Medical Association). http://www.ama-assn.org/amednews/2007/06/11/hlsa0611.htm. Retrieved 2008-08-16. 
  12. Jhalani, Juhee; Tanya Goyal, Lynn Clemow, et al (2005). "Anxiety and outcome expectations predict the white-coat effect". Blood Pressure Monitoring 10 (6): 317–9. doi:10.1097/00126097-200512000-00006. PMID 16496447. http://journals.lww.com/bpmonitoring/pages/articleviewer.aspx?year=2005&issue=12000&article=00006&type=abstract. Retrieved 2009-10-03. 
  13. (Pickering et al. 2005, p. 145) See White Coat Hypertension or Isolated Office Hypertension.
  14. (Pickering et al. 2005, p. 146) See Masked Hypertension or Isolated Ambulatory Hypertension.
  15. 15.0 15.1 Mancia G, De Backer G, Dominiczak A, et al. (June 2007). "2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)". Eur Heart J 28 (12): 1462–536. doi:10.1093/eurheartj/ehm236. PMID 17562668. 
  16. 16.0 16.1 Chobanian AV, Bakris GL, Black HR, et al (December 2003). "Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure". Hypertension 42 (6): 1206–52. doi:10.1161/01.HYP.0000107251.49515.c2. PMID 14656957. http://www.nhlbi.nih.gov/guidelines/hypertension/. 
  17. Niiranen, TJ; Kantola IM, Vesalainen R, et al (2006). "A comparison of home measurement and ambulatory monitoring of blood pressure in the adjustment of antihypertensive treatment". Am J Hypertens 19 (5): 468–74. doi:10.1016/j.amjhyper.2005.10.017. PMID 16647616. 
  18. Shimbo, Daichi; Thomas G. Pickering, Tanya M. Spruill, et al (2007). "Relative utility of home, ambulatory, and office blood pressures in the prediction of end-organ damage". Am J Hypertens 20 (5): 476–82. doi:10.1016/j.amjhyper.2006.12.011. PMID 17485006. PMC 1931502. http://www.nature.com/ajh/journal/v20/n5/abs/ajh200783a.html. 
  19. National Heart, Lung and Blood Institute. Tips for having your blood pressure taken. http://www.nhlbi.nih.gov/hbp/detect/tips.htm. 
  20. 20.0 20.1 "Diseases and Conditions Index - Hypotension". National Heart Lung and Blood Institute. September 2008. http://www.nhlbi.nih.gov/health/dci/Diseases/hyp/hyp_whatis.html. Retrieved 2008-09-16. 
  21. "Hypertension: management of hypertension in adults in primary care". NICE Clinical Guideline 34. London, England: National Institute for Health and Clinical Excellence (NICE). June 2006. http://www.nice.org.uk/nicemedia/pdf/CG034NICEguideline.pdf. Retrieved 2008-09-15. 
  22. Pesola GR, Pesola HR, Nelson MJ, Westfal RE (January 2001). "The normal difference in bilateral indirect BP recordings in normotensive individuals". Am J Emerg Med 19 (1): 43–5. doi:10.1053/ajem.2001.20021. PMID 11146017. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9K-45SRDHC-C&_user=10&_coverDate=01%2F31%2F2001&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=74f2b32e088d88986cd307f6c7219331. 
  23. Reckelhoff, Jane F. (1 May 2001). "Gender Differences in the Regulation of Blood Pressure". Hypertension 37 (5): 1199–208. PMID 11358929. http://hyper.ahajournals.org/cgi/content/abstract/hypertensionaha;37/5/1199. 
  24. National Heart, Lung and Blood Institute. Blood Pressure Tables for Children and Adolescents. http://www.nhlbi.nih.gov/guidelines/hypertension/child_tbl.htm.  (Note that the median BP is given by the 50th percentile and hypertension is defined by the 95th percentile for a given age, height, and gender.)
  25. (Pickering et al. 2005, p. 145) See Isolated Systolic Hypertension.
  26. "...more than half of all Americans aged 65 or older have hypertension." (Pickering et al. 2005, p. 144)
  27. Eguchi K, Yacoub M, Jhalani J, Gerin W, Schwartz JE, Pickering TG (February 2007). "Consistency of blood pressure differences between the left and right arms". Arch Intern Med 167 (4): 388–93. doi:10.1001/archinte.167.4.388. PMID 17325301. http://archinte.ama-assn.org/cgi/content/full/167/4/388. 
  28. Agarwal R, Bunaye Z, Bekele DM (March 2008). "Prognostic significance of between-arm blood pressure differences". Hypertension 51 (3): 657–62. doi:10.1161/HYPERTENSIONAHA.107.104943. PMID 18212263. 
  29. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM (February 2006). "Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association". Hypertension 47 (2): 296–308. doi:10.1161/01.HYP.0000202568.01167.B6. PMID 16434724. 
  30. [1]
  31. Rosenson RS, Wolff D, Green D, Boss AH, Kensey KR (February 2004). "Aspirin. Aspirin does not alter native blood viscosity". J. Thromb. Haemost. 2 (2): 340–1. PMID 14996003. 
  32. 32.0 32.1 Klabunde, RE (2007). "Cardiovascular Physiology Concepts - Mean Arterial Pressure". http://www.cvphysiology.com/Blood%20Pressure/BP006.htm. Retrieved 2008-09-29.  Archived version 2009-10-03
  33. 33.0 33.1 Klabunde, RE (2007). "Cardiovascular Physiology Concepts - Pulse Pressure". http://www.cvphysiology.com/Blood%20Pressure/BP003.htm. Retrieved 2008-10-02.  Archived version 2009-10-03
  34. 34.0 34.1 Markham LW, Knecht SK, Daniels SR, Mays WA, Khoury PR, Knilans TK (November 2004). "Development of exercise-induced arm-leg blood pressure gradient and abnormal arterial compliance in patients with repaired coarctation of the aorta". Am. J. Cardiol. 94 (9): 1200–2. doi:10.1016/j.amjcard.2004.07.097. PMID 15518624. 
  35. Messerli FH, Williams B, Ritz E (2007). "Essential hypertension". Lancet 370 (9587): 591–603. doi:10.1016/S0140-6736(07)61299-9. PMID 17707755. 
  36. O'Rourke M (1 July 1995). "Mechanical principles in arterial disease". Hypertension 26 (1): 2–9. PMID 7607724. http://hyper.ahajournals.org/cgi/content/full/26/1/2. 
  37. Mitchell GF (2006). "Triangulating the peaks of arterial pressure". Hypertension 48 (4): 543–5. doi:10.1161/01.HYP.0000238325.41764.41. PMID 16940226. http://hyper.ahajournals.org/cgi/content/full/48/4/543. 
  38. Klabunde, RE (2007). "Cardiovascular Physiology Concepts - Arterial Baroreceptors". http://www.cvphysiology.com/Blood%20Pressure/BP012.htm. Retrieved 2008-09-09.  Archived version 2009-10-03
  39. Textbook of Medical Physiology, 7th Ed., Guyton & Hall, Elsevier-Saunders, ISBN 0-7216-0240-1, page 220.
  40. Gottdiener JS, Panza JA, St John Sutton M, Bannon P, Kushner H, Weissman NJ (July 2002). "Testing the test: The reliability of echocardiography in the sequential assessment of valvular regurgitation". American Heart Journal 144 (1): 115–21. doi:10.1067/mhj.2002.123139. PMID 12094197. http://www.medscape.com/viewarticle/439534. Retrieved 2010-06-30. 
  41. What Is Pulmonary Hypertension? From Diseases and Conditions Index (DCI). National Heart, Lung, and Blood Institute. Last updated September 2008. Retrieved on 6 April, 2009.
  42. Chapter 41, page 210 in: Cardiology secrets By Olivia Vynn Adair Edition: 2, illustrated Published by Elsevier Health Sciences, 2001 ISBN 1560534206, 9781560534204
  43. Struijk PC, Mathews VJ, Loupas T, et al (October 2008). "Blood pressure estimation in the human fetal descending aorta". Ultrasound Obstet Gynecol 32 (5): 673–81. doi:10.1002/uog.6137. PMID 18816497. 
  44. Sharon, S. M. & Emily, S. M.(2006). Fundations of Maternal-Newborn Nursing. (4th ed p.476). Philadelphia:Elsevier.

External links